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Working from [KM63], [Kos93, VIIIL. 5.6], [Lan00], [Mill], [LL12].

1 Background

1.1 Notions of Equivalence

A smooth structure is a choice of atlas, however two inequivalent atlases can be diffeomorphic. That
is here we are interested in uniqueness of the smooth structure up to diffeomorphism, not equivalence
of atlases, and these two things are different. For two atlases to be equivalent we need the identity
to be a diffeomorphism, however for two spaces to be diffeomorphic we just need some map to be a
diffeomorphism.
The literal first exercise I did in differential geometry is check that the following two charts on
R are not equivlaent )
Tz, x> xs

however these two charts (or atlases) do define diffeomorphic manifold structures on R , the diffeo-
morphis is simply = — z3.

1.2 Diffeomorphism with Boundary

First we note that D™ is a manifold with boundary. Moreover it is oriented. Thus we need to be
careful about what we mean by diffeomorphism. First recall the definition of smooth maps between
manifolds with boundary. A map between open sets of upper half space

UCH" -V CH™

is smooth if it admits a smooth extension in the domain and is smooth when the image is considered
as inside R™.

f+:M—N
is smooth at a point p € M if there are charts around p and f(p), ¢, respectively, such that the
composition 1 o f o o1 is smooth between the open subsets of H" and H™.



1.3 Smooth Homotopies

Smooth maps can be identified up to

e Psuedo-isotopy: fo, f1 : M — M are psuedo-isotopic if there is an F':: I x M — I x M that is a
diffeomorphism such that F'(0, —) = fo and F(1,0) = fi.

e Isotopy: A psuedo-sotopy is an isotopy if in addition F(t, M) = {t} x M, that is it is “level
preserving”.

We denote moDiff(M) the set of maps up to isotopy, and woDiff(M) the set of maps up to psuedo-
isotopy. There is also smooth homotopy, which is weaker, it is a smooth map that is a homotopy. You
can also mix and match other conditions. In particular an isotopy is a homotopy.

Lemma (Lee somewhere). Gluing smooth manifolds along a diffeomorphism returns a smooth mani-
fold.

Lemma. Simply connected implies orientable.
It follows from some covering space argument.

Lemma ([LLI2], Prop 15.9). A connected orientable manifold has exactly two orientations.

2 h-Cobordism and its Consequences

Smale proved a version of the h-cobordism theorem (for even dimensions I think) in [Smal, to prove the
generalized Poincare conjecture (that homotopy spheres are homeomorphic to spheres). In [Sma62] he
gave a much more uniform treatment, proving the following theorem:

Theorem (Thm 4.1 loc. cit.). Consider a submanifold M* C W™ where W is connected and compact,
M is closed and both are simply connected, n > 5. If M is a deformation retract of W then W is
diffeomorphic to a tubular neigbhourhood of M in W.

This is the most conceptual and also most powerful h-cobordism variant, and has bountiful corol-
laries.

Corollary (h-Cobordism Theorem). Let W be a simply connected n > 5 h-cobordism between M and
N (both compact), then it is diffeomorphic to M x [0,1].

Proof. Apply 4.1 to one of the boundary components. Because the boundary is co-dimension
1 a tubular neighborhood is given by crossing with D' = [0, 1].

Corollary. For closed simply connected n > 5 manifoldsM and N are h-cobordant if and only if they
are diffeomorphic.

Proof. 1If two such spaces are diffeomorphic, say f: M — N, they are h-cobordant by taking
M % [0,1] as a cobordism M ~ M and N x [0, 1] similarly, then gluing these cylinders along f gives
us the required cobordism M ~ N.

If M ~ N are cobordant then by the process described in [KM63] we can perform spherical
modifications to produce a simply connected cobordism which is by definition compact, call it W.
Hence the h-cobordism theorems conditions are fulfilled and we see that W = M x [0,1] = N x [0, 1],
in particular the boundary components are diffeomorphic, hence M = N.

Corollary. There is a unique smooth structure on D™ for n > 5.


https://math.stackexchange.com/questions/786483/simply-connected-manifolds-are-orientable

Proof. If M is a contractible compact manifold with a simply connected boundary of dim
n > 5 then we can take the submanifold of 4.1 to be a point * — M and then applying the theorem
we get that M = % x D™ = D", the standard disk.

Given a diffeomorphism f : S™ — S™ then we define the twisted sphere
Zf — Dn+1 Uf Dn+1
as the pushout. It can be shown via Morse theory that this is homeomorphic to S"*! [Mil, Prop B,
pg. 110], and it is a fact that all smooth structures of spheres are given in this way:
Lemma. FEvery homotopy n > 5 sphere 3 is diffeomorphic to a twisted sphere.

Proof. Consider a homotopy sphere ¥, we can always decompose a manifold by cutting out
a submanifold, and gluing it back in via the inclusion of the boundry, so here we simply cut out a
disk
Y¥X=(X-D"y; D"
Now it is clear that a homotopy sphere minus a disk is homeomorphic to a disk, however by the

unique smooth structure on a disk we know that 3 — D™ is diffeomorphic to the disk. Thus we have
decomposed ¥ into the pushout of two discs, along a diffeomorphism.

Corollary (Generalized Poincare Conjecture). A homotopy n > 5 sphere is homeomorphic to the
standard sphere.

Proof. This is immediate from the Lemma and [Mil, Prop B, pg. 110], as every homotopy
sphere is diffeomorphic to a twisted sphere and twisted spheres are all homeomorphic to the standard
sphere.

From now on all manifolds are smooth and oriented. All maps are orientation pre-
serving. Smooth structures means smooth structures with orientation up to orientation
preserving diffeomorphism and cobordism is oriented cobordism. [Ko0s93] helps to clarify
when orientation is assumed or not. If we denote O,, the set of h-cobordism classes of homotopy n-
spheres then we can combine these facts to see that up to homeomorphism this set contains only actual
topological spheres. By h-cobordism ©,, is in bijection with the diffeomorphism classes of homotopy
spheres, that is diffeomorphism classes of S™. So ©,, is just the set of differentiable structures on S™.

©,, = DiffStruc(S™)

as sets. In fact they are isomorphic groups, this is in [Kos93l Thm 5.1].

Remark. Because all the spaces in the h-cobordism theorem are assumed to be simply connected
they are also orientable. Moreover because they are subspaces of one another we can assume that the
orientations are compatible and that the maps are orientation preserving diffeomorphisms.

2.1 Lower Dimensions

I beleive all of these results can be extended to n = 5. In dimension 4 the results are much more
pathalogical, there are infinite smooth structures on R*. The Poincare conjecture is now known for all
n. The case of n = 4 was done by Freedman in 1982 and earned him a Fields medal, the n = 3 case
was done by Perlman in 2003 worthy of another Fields medal. There is a unique smooth structures on
disks and spheres in dimensions 1 — 3, this follows from classifications of surfaces and Perlmans results
plus a result of Moise that there is a unique smooth structure on a closed 3 manifold. Thus for all
dimensions other than 4 we have the bijection on cobordism groups and smooth structures on spheres.
In dimension 4 the smooth Poincare conjecture is still open, that is we dont know how many smooth


https://en.wikipedia.org/wiki/Generalized_Poincar%C3%A9_conjecture
https://en.wikipedia.org/wiki/Generalized_Poincar%C3%A9_conjecture
https://en.wikipedia.org/wiki/Exotic_sphere#4-dimensional_exotic_spheres_and_Gluck_twists

structures there are on S* (one, more than one or infinite). It is known that ©, = 0 so the bijection
is unknown here, what is known is that the twisting spheres construction does not work, namely it is
known that if we glue two 4 discs along a diffeomorphism we always get something diffeomorphic to
the standard sphere. So in particular we have that

0 =04 2T <& DiffStruc(S*)

where I' is just the image of the twisted spheres construction.

3 Groups of Diffeomorphisms

All diffeomorphisms are orientation preserving. So far we have seen two ways to view the group
DiffStruc(S®), as the cobordism group of homotopy spheres and as given by diffeomorphisms of S?~1,
gluing discs together along them. We have seen that the map

Diff(S"~1) — DiffStruc(S™)

f D" Uy D"

is surjective. We claim that its kernel is maps psuedo-isotopic to the identity, that is that we have a
bijection
7oDiff(S™ 1) = DiffStruc(S™)

Proof. By [Kup), Lem 23.2.2] this map is a group homomorphism. We already know that it is
surjective so it suffices to prove injectivity, and hence suffices to prove that the kernel is trivial, i.e.
it reduces to proving that the kernel is maps psuedo-isotopic to the identity, which is equivalent to
saying that Sy := D" Uy D" is diffeomorphic to the standard sphere iff f is pseudo isotopic to
the identity (proven here [Kupl Prop. 23.2.3]).

+<=: Assume f is psudeo isotopic to the identity via the map F. If we consider S; as two
disks glued along their boundary then we can stretch the center out into a cylinder (image) and
apply which is then topologically S"~! x I. We can therefore apply F to this section which maps it
diffeomorphically to itself, however its image will be given by F(—,1) = id and hence the smooth
structure will be the standard smooth structure. We can extend F off the cylinder by the identity
(simply by definition on one end of the cylinder it extends because the smooth structure there is given
by f and therefore agrees with F, and the same on the other side) thus producing a diffeomorphism
of the total space to the standard sphere.

= : Begin with a diffeomorphism Sy — S™, WLOG that is orientation preserving. Again we
take the center of Sy and stretch it into a cylinder. Then the two ends of the cylinder are given
by the glued disks, and their inclusion composed with the diffeomorphism to S™ is isotopic to the
standard inclision into S™, and moreover it may be arranged such that it commutes with the given
diffeomorphism. This inclusion is isotopic to the identity because the space of inclusions of two
points into S™ is path connected (//aparently). Thus the diffeomorphism may be interpreted as a
diffeomorphism of the central cylinder and therefore as an isotopy between the identity and f. A
little vague.

This group can be related to the diffeomorphisms of a disc relative to the boundary, i.e. diffeomor-
phisms of D™ that fix pointwise a neighborhood of the boundary, we denote this group Diff5(D™), and
claim that

7oDiff(D") — 7 DIiff (S™)
given by extending the map by the identity, we think of the sphere as two disks glued and because the
diffeomorphisms here fix the boundary pointwise, we may extend over the other half of the sphere.



Proof. Reference? 1 beleive that the key is that the following is a fiber sequence of topological

spaces
Diff3(D") — Diff (") — Emb(D", S™)

The last map is removing a disc (half the sphere), that is if we have a diffeo S™ — S™ then we get
an embedding S™ — northern hemisphere = D™ — S™. The fiber over the identity of this map is
given by all the diffeomorphisms of S™ such that removing a disc is the identity, however this is just
exactly the diffeomorphisms of a disk that are identity on (a neighbourhood of) the boundardy, as
we remove the interior and this gives us the identity on the boundary that we extend over the other
half of the sphere.

Now we can (loosely, because I have not proven a LES for psuedo-isotopy classes, although it
should be similar) apply the LES for homotopy groups to get that

.o = HEmb(D", §™) — #Diff5(D") — #Diff(S") — #eEmb(D", ")

Finally the result would follow from the fact that Emb(D™, S™) is contractible (and thus its homo-
topy groups are all zero).

The fact that ToEmb(D™, S™) = 0 was also used in the previous lemma without proof and I
know nothing about the 71 group.

In the case of diffeomorphisms of discs there is no distinction between psuedo-isotopy and isotopy,

in particular the map
WoDiffa(D") — ﬁ'oDiffa(Dn)

given by identifying the maps up to psudeo-isotopy is a bijection
Proof. [Kup, Cor. 23.1.6]. The proof uses a highly non-trivial fact that the so called “concor-
dance diffeomorphism” [Kup|, Def. 21.3.1] group is contractable for a disk [Kup, Lem 23.1.2].

3.1 Summary

Thus in high dimensions we have that
moDiffo(D" 1) 2 7 Diff o (D" 1) = 7o Diff (S" ') = DiffStruct(S™) = 0,

In fact this holds for all n # 4, however the lower dimensions need to be taken care of seperately.
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